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a b s t r a c t

This paper studies the purchasing behaviour of a loss-averse engineer-to-order manufacturer, who

purchases a key component for his final product from a supplier under a single-wholesale-price

contract with spot purchase opportunities, where both the product demand and the component spot

price are uncertain. Through newsvendor type of models, we analyze several key issues, including the

effects of the manufacturer’s loss aversion, and the effects of demand and spot price uncertainties on

the manufacturer’s decision behaviour. We find that the purchasing behaviour of the loss-averse

manufacturer differs from those of the risk-neutral and risk-averse ones. Specifically, we identify some

sufficient conditions under which the loss-averse manufacturer may purchase a larger order quantity in

advance when demand becomes more uncertain or when the price becomes more uncertain. We also

discuss the two-wholesale-price contract and show that fixing the emergency supply price may lead to

a smaller order quantity.

Crown Copyright & 2011 Published by Elsevier B.V. All rights reserved.
1. Introduction

Many products that engineer-to-order (ETO) firms provide are
expensive and customized capital goods, such as production
equipments, commercial aircrafts, medical devices, large-scale
communication systems and defence systems. The underlying
technologies and engineering designs change from one order to
another, so the associated key components are custom-designed
with high probabilities of becoming obsolete and long lead times.
Hsu et al. (2006) report that Chinese ETO firms have to import
many critical components from overseas, such as integrated
circuit (IC) chips, because there is little IC design and manufactur-
ing capability within China, and the lead times for Chinese ETO
firms to procure and import such custom-made components
could be as long as two to three months. The assembly time for
a customized product is normally much shorter than the lead
time for procuring the critical components, so for simplicity in
exposition, we assume that the assembly time is negligible in this
paper. Upon receiving a customer order, an ETO firm will typically
process the order in the following manner: At the beginning, it
has to design the product for the customer. Before the final
agreement on the product order is reached, there are many
opportunities for revisions. However, even when a firm order is
011 Published by Elsevier B.V. All

ax: þ86 25 8359 7501.
confirmed, the actual demand for the key component used in the
product may be different from what was expected because of
unreliability of the final product assembly process. However, the
ETO firm can estimate the component demand distribution based
on past experience at the stage when the initial product design is
proposed to the customer.

Contracts play a significant role in decentralized supply chains.
Since the customized product made by the ETO firm cannot be
partially satisfied, the firm must purchase extra units from the
key component supplier via an emergency order when the initial
component order quantity does not meet the product’s actual
demand. Based on the characteristics of the emergency purchase
price, the supply contract arrangements between the key compo-
nent supplier and the ETO firm can be classified into two kinds,
namely the two-wholesale-price contract (Cachon, 2004; Dong and
Zhu, 2007) and the single-wholesale-price contract with spot

purchase. Under both arrangements, the ETO firm purchases an
initial quantity of the component at a fixed contract price based
on the initial component demand information. The difference
between the two kinds of supply contract is that the emergency
purchase price is also fixed under the former contract, but it is not
fixed under the latter contract. Under the latter contract, the ETO
firm may procure extra units of the component at the spot price,
which is decided by the spot market and is unknown when the
firm makes the initial procurement, so it is also called the ‘‘spot’’
price (Deng and Yano, 2002). Due to fluctuations in currency
exchange rates, and shortages or excessive inventories at the
rights reserved.
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supplier, the emergency purchase price is a random variable,
whose distribution can be estimated by some methods such as
the geometric Brownian motion (Gurnani and Tang, 1999; Li and
Kouvelis, 1999). Under the single-wholesale-price contract with
spot purchase, the ETO firm faces the issue of how best to
purchase the component in such an uncertain environment, and
needs to understand the effects of demand uncertainty, spot
price uncertainty, and its own risk preference on its purchasing
behaviour.

The perishable product purchase problem has been commonly
studied via the newsvendor (or newsboy) model (Khouja, 1999).
It has been shown that the ‘‘newsvendor’’ in the classical news-
vendor model must bear all the demand risk. So a variety of
supply contracts, such as the buy back arrangement (Pasternack,
1985), the quantity flexibility contract (Barnes-Schuster et al.,
2002; Eppen and Iyer, 1997), the sales rebate contract (Krishnan
et al., 2004; Taylor, 2002), the advance-purchase discount Con-
tract (Cachon, 2004; Dong and Zhu, 2007), etc., have been
proposed to share demand risk in supply chains. These contracts
are usually studied under the assumption that there is no supply
uncertainty. There are only a few studies that incorporate spot
purchases into supply contracts in the context of perishable
supply chain management (Gurnani and Tang, 1999; Deng and
Yano, 2002). These studies are all based on the expected cost
criterion, i.e., the ETO firm is assumed to be risk-neutral. On the
other hand, there is a considerable body of research on compo-
nent purchase and inventory management with explicit consid-
erations of the risk factors, e.g., Lau (1980), Ritchken and Tapiero
(1986), Bouakiz and Sobel (1992), Eeckhoudt et al. (1995),
Agrawal and Seshadri (2000), Chen and Federgruen (2000), Gaur
and Seshadri (2003), and Chen et al. (2007), among others. All
these studies are based on the rational principle assumption.

However, there is growing evidence that many human deci-
sions defy the rationality assumption. Through experiments,
Kahneman and Tversky (1979) find that most decision makers
have different perceived values for equal gain and loss, e.g., they
suffer greater pain from a loss than they derive pleasure from an
equal magnitude of gain. Such findings can be accounted for by
Prospect Theory. Some researchers have studied the newsvendor
problem based on Prospect Theory. In the context of the news-
vendor problem, Schweitzer and Cachon (2000) conduct two
laboratory experiments to investigate the decision bias of human
decision makers. They show that the newsvendor tends to under-
order for a high-profit product and over-order for a low-profit
product. They argue that this over/under-ordering pattern cannot
be explained by risk-averse and risk-seeking preferences. They
suggest that one explanation for the experimental results is the
anchoring and insufficient adjustment. Two new behaviour stu-
dies (see Benzion et al., 2008; Bolton and Katok, 2008) further
verify Schweitzer and Cachon’s results. Note that Schweitzer and
Cachon (2000) show that a loss-averse newsvendor (with no
shortage cost) will order strictly less than the risk-neutral news-
vendor, which implies that loss aversion cannot explain the over-
order pattern in their experiments. Wang and Webster (2009)
extend Schweitzer and Cachon’s model by considering the short-
age cost. They show that the newsvendor may order more than
the profit-maximization (risk-neutral) order. But they do not
compare the loss-averse solution with the corresponding risk-
averse solution. They further extend their work to the supply
chain and competitive settings (see Wang and Webster, 2007;
Wang 2010a,b). While the above research studies human decision
behaviours, Fiegenbaum and Thomas (1988) empirically show
that Prospect Theory can be applied to account for corporate
decision behavior at both firm and industry levels. For example,
Airline Financial News reported on 18 February 2002 that ‘‘the
airline industry is experiencing an unprecedented level of stored
aircrafts due to a cyclical downturn and the Sept. 11 attacks, and
rational economic behaviour is not prevailing’’. This would strongly
imply that the Prospect Theory developed by Kahneman and
Tversky (1979) can be applied ‘‘to better understand the key drivers
behind deciding whether to scrap or not’’.

Following this stream of research, we study the purchasing
behaviour of a loss-averse ETO manufacturer under a single-
wholesale-price contract with spot purchase. Our problem setting
is similar to Eeckhoudt et al. (1995), where they address a
newsvendor problem with an emergency supply opportunity to
meet all the shortage. They focus on analyzing the impact of risk
aversion on the optimal ordering decision. They show that a risk-
averse seller always orders less than a risk-neutral seller does. We
generalize their problem by allowing the emergency supply price
to be random and investigate the effect of loss aversion on the
optimal ordering decision. Similar to Wang and Webster (2009),
we identify the conditions under which a loss-averse manufac-
turer either always orders more or always orders less than the
risk-neutral manufacturer does. To investigate the difference
between the effects of loss aversion and risk aversion, we conduct
numerical experiments. The numerical results show that when
the emergency supply price is greater than the selling price, risk
aversion does not provide a definitive prediction of whether the
risk-averse solution is greater or less than the risk-neutral one.
This implies that the loss-averse seller may have a different
behaviour from the risk-averse seller. It is noted that although
our findings on the effects of loss aversion on the ordering
decision are similar to those of Wang and Webster (2009), they
do not compare their solution to the corresponding risk-averse
newsvendor solution as we do. Instead, they focus on investigat-
ing the role of shortage cost in decision bias, which generalizes
Schweitzer and Cachon’s (2000) analysis, whereas we concentrate
on the difference between loss aversion and risk aversion. We also
investigate how changing demand and supply price risks affect
the optimal ordering decision of the manufacturer, and the effect
of the two-wholesale-price contract on the ordering decision. Our
results shed new light on behaviorial analysis in an uncertain
operational environment.

The remainder of this paper is organized as follows. In Section 2
we introduce and formulate the problem. In Section 3 we provide
structural analysis of the optimal policy. We also address some
important managerial issues, such as how the manufacturer’s
purchasing behavior is affected by his loss-aversion attitude, demand
uncertainty, and emergency supply price uncertainty. In Section 4 we
extend the model with Bernoulli spot price distribution to the case
with a general spot price distribution. In Section 5 we conclude the
paper and suggest topics for future research. We present the proofs
in the Appendix.
2. Problem description and model formulation

We consider an ETO manufacturer who purchases a custom-
component from a key supplier after receiving a potential
customer order. Due to the long lead time, the component
supplier will offer the ETO firm a single-wholesale-price contract
with spot purchase. Under this contract, the ETO firm must make
an advanced procurement at the fixed contract price w at time 0,
when the potential customer order arrives. Because of uncertain-
ties in product design and manufacturing processes, the compo-
nent demand quantity D, which is used in the manufacturing
process at a (known) future time t0, is not known exactly at
time 0, but its distribution function FðxÞ and the corresponding
density function f ðxÞ can be estimated. In the ETO setting,
especially the heavy equipment industry, the final product cannot
be delivered even if there is a shortage of only one unit of the
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component. The shortage quantity from the initial procurement
must be replenished from the supplier at the spot price p through
an emergency supply order. As observed by Gurnani and Tang
(1999), and Li and Kouvelis (1999), there are many factors such as
fluctuations in currency exchange rates, shortages, and excessive
inventories of the component at the supplier, etc., that will make
the spot price of the emergency order p uncertain, which can go
up to ph4w with a probability of a, i.e., Pðp4wÞ ¼ a; or down to
plrw with a probability of 1�a, i.e., PðprwÞ ¼ 1�a. We assume
that the component supplier has unlimited capacity and can meet
the manufacturer’s demand, FðxÞ ¼ 0 for all xr0, and f ðxÞ40 for
all x40. Let F ðxÞ ¼ 1�FðxÞ and p ¼ aphþð1�aÞpl.

Let Q be the component order quantity at time 0. Then the
manufacturer may need to purchase ðD�Q Þþ extra units of the
component via the emergency supply mode, and may have a
surplus of ðQ�DÞþ units after delivery of the customer order.
Let r and v be the unit revenue and unit salvage value of the
component, respectively. For the order specific component, the
value of v is close to zero. These parameters represent three key
economic characteristics of the component. It is reasonable to
assume that r4wZv and pl4v; otherwise, it might not be
profitable to produce at all or it might be profitable to procure
an unlimited number of the component in order to salvage them.
Based on the above assumptions, the manufacturer’s profit func-
tion can be expressed as

pðQ ;D,pÞ ¼
p1ðQ ;D,pÞ ¼ ðr�vÞD�ðw�vÞQ if DoQ ,

p2ðQ ;D,pÞ ¼ ðr�pÞD�ðw�pÞQ if DZQ :

(
ð1Þ

Let d1(Q) and d2(Q; p) be the break-even quantities of the realized
demand, i.e.,

d1ðQ Þ ¼
w�v

r�v
Q , d2ðQ ; pÞ ¼

p�w

p�r
Q if p4r,

1 if prr:

8<
:

The break-even quantities imply that if the realized demand
quantity D¼ x is either too low, i.e., xod1ðQ Þ, or too high, i.e.,
x4d2ðQ ; phÞ, then the manufacturer’s profit will be negative, i.e.,
incurring a loss. Otherwise, if the demand is between d1(Q) and
d2(Q;ph), then the profit will be positive, i.e., making a gain.

We assume that the manufacturer has the following utility
function of constant loss aversion (Kahneman and Tversky, 1979)

uðxÞ ¼
x if xZ0,

lx if xo0,

(
ð2Þ

where l41 is defined as the manufacturer’s loss-aversion coeffi-
cient. A larger value of l indicates a higher level of loss aversion.
Note that the above utility function is concave and so is the
risk-averse utility function. The critical difference between a loss-
averse utility function and a risk-averse utility is that the
loss-averse utility function explicitly addresses the reference-depen-
dence effect while the risk-averse utility function does not. Loss
aversion has been widely employed to perform behaviourial analysis
in economics, finance, and operations management (see, e.g.,
Kahneman and Tversky, 1979; Barberis and Huang, 2001;
Schweitzer and Cachon, 2000). Our research is also in this fashion.

The loss-averse ETO manufacturer’s problem can be formu-
lated as maximization of the expected loss-averse utility function.
Note that uðxÞ ¼ x�ðl�1Þx�. The expected utility function for the
loss-averse ETO manufacturer can be written as follows:

PðQ ; lÞ ¼ EpðQ ;D,pÞ�CðQ ; lÞ, ð3Þ

where

EpðQ ;D,pÞ ¼

Z Q

0
p1ðQ ; x,pÞ dFðxÞþ

Z 1
Q

p2ðQ ; x,pÞ dFðxÞ,
and

CðQ ; lÞ ¼�ðl�1Þ

Z d1ðQ Þ

0
p1ðQ ; x,pÞ dFðxÞþa

Z 1
d2ðQ ;phÞ

p2ðQ ; x,phÞ dFðxÞ

" #
:

Note that EpðQ ;D,pÞ is the expected profit and CðQ ;lÞ is
the premium paid for loss aversion. By the definitions of the
break-even quantities of the realized demand, the second term on
the right hand side of (3), i.e., the biased loss relative to the
expected profit, is negative or zero. This means that PðQ ; lÞr
EpðQ ;D,pÞ, i.e., the expected utility of the loss-averse manufac-
turer is never more than its expected profit. Thus the expected
utility function for the loss-averse manufacturer is the sum of its
expected profit and its biased loss relative to the expected profit.
Then the component purchasing problem for the loss-averse ETO
manufacturer can be expressed as

max
Q Z0

PðQ ; lÞ: ð4Þ

3. Optimal policy and analysis

The component procurement behaviour of the loss-averse
manufacturer can be studied through the stochastic program (4).
The following proposition establishes that there exists a unique
optimal solution to problem (4).

Proposition 1. The expected utility function for the loss-averse

manufacturer, PðQ ; l,aÞ, is concave for all Q in the range of the

demand distribution function FðxÞ. So there is a unique optimal solution

to problem (4), Q�l , which satisfies the following first-order condition:

ðp�wÞ�ðp�vÞFðQ Þ�ðl�1ÞcðQ Þ ¼ 0, ð5Þ

where

cðQ Þ :¼ ð@CðQ ;lÞ=@Q Þ=l�1¼ ðw�vÞFðd1ðQ ÞÞ�aðph�wÞF ðd2ðQ ;phÞÞ:

This proposition establishes the concavity of the objective
function, which ensures the optimality of the solution (5). Note
that ðp�wÞ�ðp�vÞFðQ Þ is the marginal profit of inventory and
ðl�1ÞcðQ Þ is the premium paid for loss aversion per unit inven-
tory. In the following, without causing any confusion, we denote
cðQ Þ as the marginal premium of loss aversion. Thus the first-order
Eq. (5) implies that, under the optimal decision, the marginal
profit equals the marginal premium of loss aversion multiplied by
ðl�1Þ. In particular, when the manufacturer is risk-neutral, i.e.,
l¼ 1, (5) yields the result of Gurnani and Tang (1999).

3.1. Effects of loss aversion

We now discuss the impacts of the manufacturer’s loss-
aversion on the purchasing decision. We define g ¼ ðw�vÞ=

aðph�wÞ as the manufacturer’s minimum cost ratio of the unit
absolute overage cost to the expected unit absolute underage

cost, and gl ¼ F ðd2ðQ
�
la;phÞÞ=Fðd1ðQ

�
laÞÞ as the ratio of the prob-

ability of having the absolute underage loss to the probability of
having the absolute overage loss. Similar to Wang and Webster
(2009), we obtain the following proposition that demonstrates
the effect of loss aversion on the optimal ordering quantity.

Proposition 2. If g14g, then Q�l ZQ�1a and Q�l is increasing in l; if

g1og, then Q�l rQ�1a and Q�l is decreasing in l; and if g1 ¼ g, then

Q�l ¼Q�1a and Q�l is independent of l.

This proposition shows that the loss-averse manufacturer will
order more if the loss ratio of the risk-neutral one is higher than
the minimum cost ratio and order less if the loss ratio of the risk-
neutral one is lower than the minimum cost ratio.
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The condition g14g (g1og) implies that cðQ�1 Þo0 (cðQ�1 Þ40),
i.e., the marginal premium of loss aversion at the risk-neutral
optimal quantity is negative (positive). Thus the above proposition
can also be interpreted as follows: If the marginal premium of loss
aversion at the risk-neutral optimal quantity is negative, then the
loss-averse newsvendor will order more than the risk neutral one
and the more loss-averse the decision maker is, the more he will
order; if the marginal premium of loss-aversion at the risk-neutral
optimal quantity is positive, then the loss-averse newsvendor will
order less than the risk neutral one and the less loss-averse the
decision maker is, the less he will order; and if the marginal
premium of loss aversion at the risk-neutral optimal quantity is
zero, then loss aversion does not affect the ordering decision.

The following example demonstrates the effects of loss aver-
sion on the optimal ordering decisions.

Example 1. Set r¼ 1,a¼ pl ¼w¼ 0:5,v¼ 0, FðxÞ ¼ 1
50 e�

x
50, and

phAf1:6,2:0g. Change the value of the parameter l to generate
the optimal decision curves for ph ¼ 1:6,2:0, respectively (see Fig. 1).
We can observe that the optimal ordering quantity increases in l
when ph ¼ 1:6 but decreases in l when ph ¼ 2:0. Note that
g1 ¼ 0:83og ¼ 0:91 when ph ¼ 1:6, and g1 ¼ 0:694 g ¼ 0:67 when
ph ¼ 2:0. This confirms the prediction of Proposition 2.

Note that if phrr then d2ðQ ; pÞ ¼1 and g1 ¼ 0og. Applying
Proposition 2, we have the following corollary.

Corollary 3. If phrr, then Q�l is decreasing in l and Q�l rQ�1a.

This corollary states that when the possible highest emergency
procurement price is lower than the marginal revenue, the loss-
averse manufacturer will always order less than the risk-neutral
manufacturer. In addition, the more loss-averse the manufacturer
is, the smaller the initial order quantity he will place. Naturally,
more order quantities will be deferred to the second opportunity.

A natural question arises here: Does a loss-averse decision
maker behave differently from a risk-averse decision maker? Note
that Eeckhoudt et al. (1995) show that the risk-averse decision
maker always orders less than the risk-neutral one, assuming that
the emergency supply cost is lower than the selling price. Corollary
3 shows that loss aversion has a similar effect on the ordering
decision when phrr. But it is unclear whether the result holds
under the risk-averse framework when the emergency supply cost
is higher than the selling price. Neither Schweitzer and Cachon
(2000) nor Wang and Webster (2009) address this question. To
gain some insights, we use numerical experiments to compare the
patterns of risk-averse solutions and loss-averse solutions.
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Example 2. Set r¼ 1,a¼ 1,w¼ 0:5,v¼ 0,pl ¼ 0:5,ph ¼ 1:6, and
FðxÞ ¼ 1

50 e�x=50. Note that ph4r. For comparison purposes, we
consider a loss-averse manufacturer with a degree of loss aver-
sion being characterized by l and a risk-averse manufacturer with
a utility function UðxÞ ¼ �e�gx, where g represents the degree of
risk aversion. Change the values of the parameters g and l to
generate the curves of the optimal ordering quantities (see
Figs. 2 and 3).

Fig. 2 shows that when the degree of risk aversion is relatively
large (small), a risk-averse decision is greater (less) than the risk-
neutral decision. However, the loss-averse decision is always
smaller than the risk-neutral decision, as shown in Fig. 3. Note
that g1 ¼ 0:27og ¼ 0:45. By Proposition 2, we know that the loss-
averse decision must be greater than the risk-neutral one and
increasing in l. This indicates that the loss-averse decision maker
indeed has a different behaviorial pattern from the risk-
averse one.

3.2. Effects of increased demand risk

We next analyze the effects of an increase in demand risk on
the optimal decisions. Changes in risk are represented by a
change in the demand distribution from FðxÞ to GðxÞ. Without
loss of generality, we assume that the support of G is contained in
½0,1Þ. Let Q�la,F denote the optimal order quantity with demand
distribution FðxÞ and Q�la,G denote the optimal order quantity with
demand distribution GðxÞ. The corresponding expected utility
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functions are denoted by PF and PG, respectively. We say that F

first-order stochastically dominates G if FðxÞrGðxÞ for all
xA ½0,1Þ. Under the first-order stochastic dominance condition,
we find that the optimal initial order quantity decreases with
increasing risk, which is stated in the following proposition:

Proposition 4. If F first-order dominates G in ½0,1Þ, then Q�l,GrQ�l,F .

This proposition fits our intuition that a larger demand (in
probabilistic sense) implies a greater ordering quantity.

Similar to Eeckhoudt et al. (1995), we give the following
definition of mean-preserving increase in risk (MPIR):

Definition 1 (MPIR, Rothschild and Stiglitz, 1970). G is said to be a
mean-preserving increase in risk (MPIR) of F if G and F satisfy the
following two conditions:Z t

0
ðGðxÞ�FðxÞÞ dxZ0 for all tA ½0,1Þ ðincrease in spreadÞ; ð6Þ

Z 1
0
ðGðxÞ�FðxÞÞ dx¼ 0 ðmean-preservationÞ: ð7Þ

While condition (6) states the second-order stochastic dominance
of F over G, condition (7) preserves the mean (Eeckhoudt et al., 1995).
Based on the above definition, we have the following proposition:

Proposition 5. (1) An MPIR restricted to the interval ½0,1Þ reduces the

optimal expected loss-averse utility, i.e., P�GðQ�lG; lÞrP�F ðQ�lF ;lÞ. (2) If

ðp�vÞðGðQ�lF Þ�FðQ�lF ÞÞþðl�1Þ½aðph�wÞðGðd2ðQ
�
lF ; phÞÞ�Fðd2ðQ

�
lF ; phÞÞÞ

þðw�vÞðGðd1ðQ
�
lF ÞÞ�Fðd1ðQ

�
lF ÞÞÞ�Z0, ð8Þ

then an MPIR restricted to the interval ½0,1Þ decreases the optimal order

quantity, i.e., Q�lF ZQ�lG; otherwise Q�lF oQ�lG.

Proposition 4 states that, with the MPIR restriction, (1) the
optimal order quantity for the loss-averse manufacturer with
demand distribution G can be less or more than that with demand
distribution F when F stochastically dominates G, and (2) the
maximum expected utility increases from G to F, which means
that the loss-averse manufacturer prefers demand distribution F

to demand distribution G.
To obtain unambiguous results, another concept is needed.

Definition 2. G is an increase in the single spread across b on F if
G and F satisfy the following condition:

½GðyÞ�FðyÞ�½b�y�Z0: ð9Þ

Inequality (9) is also called the single-crossing condition. It implies
that the distribution curves spread across only once and F

dominates G conditionally on yob and G dominates F condition-
ally on y4b. If the simple spread also preserves the mean, then
(9) and (6) are implied, which implies that it is a special case of
MPIR (Rothschild and Stiglitz, 1970). For example, if F and G

follow the normal distribution with standard deviations sF osG

and a common mean m40, then it is easy to verify that (9) holds
when b¼ m, which implies that a change from F to G is a simple
spread across m.

The following proposition shows the impact of increased
demand risk on the optimal decisions under loss aversion.

Proposition 6. Suppose G is an increase in the single spread across b
on F.
(a)
 If d2ðQ
�
1F Þrb and g1F rg, where g1F ¼ F ðd2ðQ

�
1F ; phÞÞ=Fðd1ðQ

�
1 ÞÞ,

then Q�lF ZQ�lG.
(b)
 If phrr and Q�1F rb, then Q�lF ZQ�lG.

(c)
 If d1ðQ

�
1F ÞZb and g1F Zg, then Q�lF rQ�lG.
This proposition provides sufficient conditions under which an
increase in the demand risk in the sense of condition (9) decreases or
increases the ordering quantity. Under the single-crossing condition
(9), Eeckhoudt et al. (1995) show that a risk-averse decision maker
orders less than the risk neutral decision maker does. Our results
show that the model under loss aversion framework can have richer
predictions on the effects of increased demand risk. Moreover, these
conditions are much sharper than those provided by Eeckhoudt et al.
(1995) in that our conditions are only defined on the risk-neutral
solution while applying to any degree of loss aversion, whereas theirs
are restricted to a given risk-averse utility function.

3.3. Effects of increased price risk

We now analyze the effects of increased emergency supply
price risk on the optimal decision. An increase in supply price risk
can be represented by a change from the emergency supply price
distribution Fp(y) to distribution Gp(y), which can be denoted as
follows:

FpðyÞ ¼

0 if yopl,

1�a if plryoph,

1 if yZph

8><
>:

and

GpðyÞ ¼

0 if yop0l,

1�a0 if p0lryop0h,

1 if yZp0h:

8><
>:

Then a change from Fp to Gp is a simple spread across ph if and
only if plZp0l,aZa0, and phrp0h.

Proposition 7. Suppose Gp is an increase in the single spread across

ph on Fp and the single spread preserves the mean. Then, Q�lFp
rQ�lGp

.

Proposition 7 shows that increased price risk (in the sense of a
single spread with mean preservation) leads to an increase in
ordering quantity. The rationale is that as the emergency supply
price risk increases, a loss-averse manufacturer will order more to
reduce the potential emergency supply order.

3.4. Two-wholesale-price contracts versus single-wholesale-price

contracts

By now we have studied the procurement problem for the loss-
averse manufacturer under the single-wholesale-price contract. In
practice, to reduce the price risk, the purchaser may also want to
lock in the emergency supply price with the same supplier by
signing a contract containing an initial order price w and an
emergency order price ~p, which is called the two-wholesale-price
contract (Cachon, 2004; Dong and Zhu, 2007), denoted as (w, ~p). By
offering the two-wholesale-price contract, the corresponding sup-
plier shares the risk with the manufacturer due to the obligation to
meet all the demand shortage. Let ~Q

�

l be the optimal initial order
quantity for the loss-averse manufacturer under the two-part
pricing contract (w, ~p). We have the following result.

Proposition 8. If

~pF ðQ�l Þþðl�1Þð ~p�wÞF ðd2ðQ
�
l ; ~pÞÞrpF ðQ�l Þ

þaðl�1Þðph�wÞF ðd2ðQ
�
l ; phÞÞ,

then ~Q
�

lrQ�l . Otherwise, ~Q
�

l4Q�l . In particular, if ~prminðr,pÞ, then
~Q
�

lrQ�l :
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This proposition shows that under the two-wholesale-price
contract the optimal ordering quantity may be greater or less
than the optimal ordering quantity under the single-wholesale-
price contract. When the emergency supply price ~p is less than
the selling price r and the average spot price p, the two-part
pricing contract yields a smaller ordering quantity. From the
supplier’s point of view, this seems to be counterintuitive:
Sharing the demand risk with the buyer by offering a two-part
pricing contract in fact leads to a smaller ordering quantity.
Recall that Proposition 7 provides the insight that increased
price risk increases ordering quantity. Thus, the reduction in
the price risk due to the lower fixed emergency supply price
induces the loss-averse manufacturer to reduce the ordering
quantity. This provides a behaviorial insight for supply chain
management.
4. Extension to general spot price distribution

A restriction of the preceding analysis is the assumption that
pAfph,plg for the sake of tractability. In this section we relax this
restriction by assuming that p is distributed in ½v,1Þ, where
p ¼ E½p�, with the distribution function G. Assume that the
demand and price are independent. Then the expected utility
function P can be expressed as

PðQ ; lÞ ¼ EpðQ ;D,pÞ�CðQ ; lÞ,

where

CðQ ; lÞ ¼�ðl�1Þ

Z d1ðQ Þ

0
p1ðQ ; x,pÞ dFðxÞ

"

þ

Z 1
r

Z 1
d2ðQ ;pÞ

p2ðQ ; x,pÞ dFðxÞ dGðpÞ

�
:

Taking the first derivative of P with respect to Q yields

@PðQ ; lÞ
@Q

¼ ðp�wÞ�ðp�vÞFðQ Þ�ðl�1ÞcðQ Þ,

where cðQ Þ ¼ ðw�vÞFðd1ðQ ÞÞ�
R1

r ðp�wÞF ðd2ðQ ; pÞÞdGðpÞ.
Since d1(Q) and d2(Q;p) are increasing in Q for any given p4r,

the right-hand side of the above equality is decreasing in Q, which
implies that P is concave in Q. The optimal quantity decision Q�l
satisfies the following first-order condition:

ðp�wÞ�ðp�vÞFðQ Þ�ðl�1ÞcðQ Þ ¼ 0:

Similar to Proposition 2, we have the following proposition.
The proof, which is similar to that of Proposition 2, is skipped.

Proposition 9. If cðQ�1 Þo0, then Q�l ZQ�1 and Q�l is increasing in l;
if cðQ�1 Þ40, then Q�l rQ�1 and Q�l is decreasing in l; and if

cðQ�1 Þ ¼ 0, then Q�l ¼Q�1 for all lZ1.

5. Conclusions

For a long time, purchasing decisions have been widely studied
based on the expected utility theory, i.e., on the assumption
of a risk-neutral or a risk-averse decision maker. Based on
Prospect Theory, we study the custom-component procurement
decision problem with uncertain demand and an uncertain
emergency supply price. After deriving the optimal initial order
quantity for a loss-averse ETO manufacturer, we discuss some
key issues, such as the effects of the manufacturer’s loss aversion
on the optimal initial order quantity, and how demand and
emergency supply price uncertainties affect the decision behavior
of the loss-averse manufacturer. We find that the purchasing
behavior of the loss-averse manufacturer is different from those
of the risk-neutral and risk-averse ones. The loss-averse manu-
facturer may order a larger quantity in advance when demand or
emergency supply price becomes more uncertain. We also con-
sider the two-wholesale-price contract and show that the loss-
averse manufacturer may order less under this contract. In
summary, the purchasing behavior of the loss-averse manufac-
turer is more complex than those of the risk-neutral and risk-
averse manufacturers. This behavior reflects real-life purchasing
situations. While many researchers have examined the issues of
supply contracts and supply chain coordination (e.g., Anupindi,
1999), future research should study the impacts of various supply
contracts on the purchasing behavior of the loss-averse
manufacturer.
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Appendix A

A.1. Proof of Proposition 1

The first derivative of the expected utility function with
respect to Q is

@PðQ ; lÞ
@Q

¼ ðp�wÞ�ðp�vÞFðQ Þþðl�1Þ

�½aðph�wÞF ðd2ðQ ; phÞÞ�ðw�vÞFðd1ðQ ÞÞ� ð1Þ

and the second derivative of the expected utility function with
respect to Q is

@2PðQ ; lÞ
@Q2

¼�ðp�vÞf ðQ Þ�ðl�1Þ

� f ðd1ðQ ÞÞ
ðw�vÞ2

r�v
þaf ðd2ðQ ; phÞÞ

ðph�wÞ2

ph�r

" #
o0: ð2Þ

The the objective function is concave.

A.2. Proof of Proposition 2

The proof is similar to Wang and Webster (2009, Theorem 2).
To be self-contained, we provide the key procedures here.

If g14g, then cðQ�1 Þo0. For any l41, we have ð@PðQ�1 ;lÞÞ=
@Q ¼ ðp�wÞ�ðp�vÞFðQ�1 Þ�ðl�1ÞcðQ�1 Þ ¼�ðl�1ÞcðQ�1 Þ40, where

the second equality is derived from the first-order condition

ðp�wÞ�ðp�vÞFðQ�1 Þ ¼ 0. The concavity of Pð�; lÞ implies that

Q�l ZQ�1 . Then, the concavity of Pð�;1Þ implies that ðp�wÞ�

ðp�vÞFðQ�l Þr0, which in turns implies that cðQ�l Þr0 for any

l41.
For any 1ol1ol2, we have

@PðQ�l1
; l2Þ

@Q
¼ ðp�wÞ�ðp�vÞFðQ�l1

Þ�ðl2�1ÞcðQ�l1
Þ

Zðp�wÞ�ðp�vÞFðQ�l1
Þ�ðl1�1ÞcðQ�l1

Þ

¼
@PðQ�l1

; l1Þ

@Q
¼ 0, ð3Þ

where the inequality is due to the fact that cðQ�l1
Þr0. By the

concavity of Pð�; l2Þ, we know that Q�l1
rQ�l2

.
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The other assertions can be proved in a similar way and thus
we skip the remaining proofs.

A.3. Proof of Proposition 4

If F first-order stochastically dominates G, then FðQ ÞrGðQ Þ,
Fðd2ðQ ; phÞÞrGðd2ðQ ; phÞÞ, and Fðd1ðQ ÞÞrGðd1ðQ ÞÞ. It is easy to
verify that

@PGðQ
�
lF ; lÞ

@Q
r
@PF ðQ

�
lF ; lÞ

@Q
¼ 0:

Then the concavity of PG implies that Q�lGrQ�lF .

A.4. Proof of Proposition 5

(1) Letting D¼PF ðQ ; lÞ�PGðQ ; lÞ, we have

D¼
Z 1

0
uðpðQ ; x,pÞÞdðFðxÞ�GðxÞÞ

¼ p1ðQ ; x,pÞ½FðxÞ�GðxÞ�jQ0 þðr�vÞ

Z Q

0
½FðxÞ�GðxÞ� dx

þp2ðQ ; x,pÞ½FðxÞ�GðxÞ�j1Q �ðp�rÞ

Z 1
Q
½FðxÞ�GðxÞ� dx

þðl�1Þ

(
p1ðQ ; x,pÞ½FðxÞ�GðxÞ�jd1ðQ Þ

0 þðr�vÞ

Z d1ðQ Þ

0
½FðxÞ�GðxÞ� dx

þap2ðQ ; x,phÞ½FðxÞ�GðxÞ�j1d2ðQ ;phÞ
�aðph�rÞ

Z 1
d2ðQ ;phÞ

½FðxÞ�GðxÞ� dx

)
:

Since Fð0Þ ¼ Gð0Þ ¼ 0, p1ðQ ;Q ,pÞ ¼ p2ðQ ;Q ,pÞ, p1ðQ ; d1ðQ Þ,pÞ ¼
p2ðQ ; d2ðQ ; phÞ,phÞ ¼ 0, and Fð1Þ ¼ Gð1Þ ¼ 1, we have

D¼ ðr�vÞ

Z Q

0
½GðxÞ�FðxÞ� dx�ðp�rÞ

Z 1
Q
½GðxÞ�FðxÞ� dx

þðl�1Þ ðr�vÞ

Z d1

0
½GðxÞ�FðxÞ� dx�ðph�rÞa

Z 1
d2ðQ ;phÞ

½GðxÞ�FðxÞ� dx

" #
:

Since
R1

0 ½GðxÞ�FðxÞ�dx¼ 0, we haveZ 1
Q
½GðxÞ�FðxÞ� dx¼

Z 1
0
½GðxÞ�FðxÞ� dx�

Z Q

0
½GðxÞ�FðxÞ� dx

¼�

Z Q

0
½GðxÞ�FðxÞ� dx,

Z 1
d2ðQ ;phÞ

½GðxÞ�FðxÞ� dx¼
Z 1

0
½GðxÞ�FðxÞ� dx�

Z d2ðQ ;phÞ

0
½GðxÞ�FðxÞ� dx

¼�

Z d2ðQ ;phÞ

0
½GðxÞ�FðxÞ� dx:

So

D¼ ðr�vÞ

Z Q

0
½GðxÞ�FðxÞ� dxþðp�rÞ

Z Q

0
½GðxÞ�FðxÞ� dx

þðl�1Þ ðr�vÞ

Z d1ðQÞ

0
½GðxÞ�FðxÞ� dxþðph�rÞa

" Z d2ðQ ;phÞ

0
½GðxÞ�FðxÞ� dx

#

¼ ðp�vÞ

Z Q

0
½GðxÞ�FðxÞ� dxþðl�1Þ ðr�vÞ

Z d1ðQ Þ

0
½GðxÞ�FðxÞ� dx

"

þðph�rÞa
Z d2ðQ ;phÞ

0
½GðxÞ�FðxÞ� dx

#
Z0:

This implies that for any Q, we have

PF ðQ ; lÞZPGðQ ; lÞ:

Then we have

max
Q

PF ðQ ; lÞZmax
Q

PGðQ ; lÞ, i:e: PF ðQ
�
lF ; lÞZPGðQ

�
lG;lÞ:
(2) From the first-order condition (5), we have

@PF ðQ
�
lF ; lÞ

@Q
�
@PGðQ

�
lF ; lÞ

@Q
¼ ðp�vÞðGðQ�lF Þ�FðQ�lF ÞÞ

þðl�1Þ½aðph�wÞðGðd2ðQ
�
lF ; phÞÞ

�Fðd2ðQ
�
lF ; phÞÞÞþðw�vÞðGðd1ðQ

�
lF ÞÞ

�Fðd1ðQ
�
lF ÞÞÞ�:

Thus, by the concavity of the expected utility, the results are
obvious to hold.

A.5. Proof of Proposition 6

We only prove part (a). Parts (b) and (c) can be proved using
the same logic for proving part (a) so we omit them.

Since d1ðQ
�
1F ÞoQ�1F od2ðQ

�
1F ; phÞ, then d2ðQ

�
1F ; phÞrb implies

that d1ðQ
�
1F ÞoQ�1F od2ðQ

�
1F ; phÞrb. Then, by the single-crossing

condition, we know that Fðd1ðQ
�
1F ÞÞrGðd1ðQ

�
1F ÞÞ, FðQ�1F ÞrGðQ�1F Þ,

and Fðd2ðQ
�
1F ; phÞÞrGðd2ðQ

�
1F ; phÞÞ. It is clear that inequality (8) is

satisfied when l¼ 1. By Proposition 5, we know that Q�1F ZQ�1G.
Since g1F rg, by Proposition 2, Q�lF rQ�1F and Q�lF is decreasing

in l. Then, for any l41, Q�lF ob. Since d1ðQ Þ and d2ðQ ; phÞ are both
increasing in Q, we have d1ðQ

�
lF Þrd1ðQ

�
1F Þob and d2ðQ

�
lF ; phÞr

d2ðQ
�
1F ; phÞrb. Then, applying the single-crossing condition, we

know that Fðd1ðQ
�
lF ÞÞrGðd1ðQ

�
lF ÞÞ, FðQ�lF ÞrGðQ�lF Þ, and Fðd2ðQ

�
lF ;

phÞÞrGðd2ðQ
�
lF ; phÞÞ, which implies that inequality (8) is satisfied

for any l41. By Proposition 5, Q�lF ZQ�lG for any l41. This proves
part (a).

A.6. Proof of Proposition 7

Note that for any Q 40, d2ðQ ; phÞ ¼ ðph�w=ph�rÞQ ¼

Qþðr�w=ph�rÞQ is decreasing in ph as ph4r. Then F ðd2ðQ ; phÞÞ

is increasing in ph. Since the single-crossing condition implies that
phrp0h, we have ðph�wÞF ðd2ðQ ; phÞÞrðp0h�wÞF ðd2ðQ ; p

0
hÞÞ. Since

the single spread preserves the mean, i.e., aphþð1�aÞpl ¼

a0p0hþð1�a
0Þp0l, from the first-order condition (5), we can observe

that

@PGp
ðQ�lFp

; lÞ

@Q
Z

@PFp
ðQ�lFp

; lÞ

@Q
¼ 0,

where PGp
and PFp

represent the expected utility function
corresponding to Gp and Fp, respectively. Then, the concavity of
PGp

implies that Q�lGp
ZQ�lFp

.

A.7. Proof of Proposition 8

Under the two-wholesale-price contract (w, ~p), the expected
utility function can be expressed as

~PðQ ;lÞ ¼ EpðQ ;x, ~pÞþðl�1Þ

Z d1ðQ Þ

0
p1ðQ ;x, ~pÞ dFðxÞ

"
þ

Z 1
d2ðQ ; ~pÞ

p2ðQ ; x, ~pÞ dFðxÞ
�
:

ð1Þ

Similar to the single-wholesale-price contract, it is obvious that
~PðQ ; lÞ is concave in Q, and there exists a unique optimal solution

and its first-order condition is

ð ~p�wÞ�ð ~p�vÞFð ~Q
�

lÞþðl�1Þ½ð ~p�wÞF ðd2ð
~Q
�

l; ~pÞÞ�ðw�vÞFðd1ð
~Q
�

lÞÞ� ¼ 0:

ð2Þ

Inserting Q�l , the optimal initial order quantity under the one-
price only contract, into the left-hand side of (2), we know from
(5) that if

~pF ðQ�l Þþðl�1Þð ~p�wÞF ðd2ðQ
�
l ; ~pÞÞrpF ðQ�l Þþaðl�1Þðph�wÞF ðd2ðQ

�
l ; phÞÞ,

then @ ~PðQ�l ; lÞ=@Q r@PðQ�l ; lÞ=@Q . By the concavity of the

expected utility, ~Q
�

lrQ�l . Otherwise, ~Q
�

l4Q�l .
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In particular, if ~prminðr,pÞ, then d2ðQ
�
l ; ~pÞ ¼ 0, which implies

that

@ ~PðQ�l ; lÞ
@Q

¼ ð ~p�wÞ�ð ~p�vÞFðQ�l Þ�ðl�1Þðw�vÞFðd1ðQ
�
l ÞÞ

r ðp�wÞ�ðp�vÞFðQ�l Þ�ðl�1Þðw�vÞFðd1ðQ
�
l ÞÞ

r ðp�wÞ�ðp�vÞFðQ�l Þþðl�1Þ½ðph�wÞF ðd2ðQ
�
l ; phÞÞ

�ðw�vÞFðd1ðQ
�
l ÞÞ�

¼
@PðQ�l ; lÞ

@Q
¼ 0:

By concavity, ~Q
�

lrQ�l .
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